
Binding Balls: Fast Detection of Binding Sites

Using a Property of Spherical Fourier Transform

MATTEO COMIN,1 CONCETTINA GUERRA,1 and FRANK DELLAERT2

ABSTRACT

The functional prediction of proteins is one of the most challenging problems in mod-
ern biology. An established computational technique involves the identification of three-
dimensional local similarities in proteins. In this article, we present a novel method to
quickly identify promising binding sites. Our aim is to efficiently detect putative binding
sites without explicitly aligning them. Using the theory of Spherical Harmonics, a candidate
binding site is modeled as a Binding Ball. The Binding Ball signature, offered by the
Spherical Fourier coefficients, can be efficiently used for a fast detection of putative regions.
Our contribution includes the Binding Ball modeling and the definition of a scoring function
that does not require aligning candidate regions. Our scoring function can be computed
efficiently using a property of Spherical Fourier transform (SFT) that avoids the evaluation
of all alignments. Experiments on different ligands show good discrimination power when
searching for known binding sites. Moreover, we prove that this method can save up to 40%
in time compared with traditional approaches.
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1. INTRODUCTION

The prediction of interactions between proteins and ligands is of great interest to the functional

annotation of proteins. In applications such as the design of drugs, computational techniques have

proven useful to filter out possible three-dimensional arrangements of proteins’ complexes. A variety of

geometric methods for shape representation and recognition, often developed within other fields, have been

applied to solve many instances of the protein structural comparison problem (Artymiuk et al., 2005;

Ballester and Richards, 2007; Bock et al., 2007a; Shulman-Peleg et al., 2004; Kinoshita et al., 2001; Sommer

et al., 2007; Weskamp et al., 2004).

In this article, we present a novel method to quickly identify promising binding sites, either in a protein

cavity or on an entire protein surface. Our aim is to efficiently detect putative binding sites without

explicitly aligning them, i.e., without actually computing the optimal rotation that best overlaps two binding

sites. Instead, with our method we are able to simultaneously evaluate all possible rotations corresponding

to a single translation.
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To represent a given binding site, we introduce the notion of Binding Ball, a spherical description of a

query binding site, a concept tightly related to Connolly’s representation of molecular surfaces (Connolly,

1983). We define a Binding Ball as a sphere with an associated spherical function representing the molecular

surface.

After creating the Binding Ball for a given query binding site, we ‘‘roll’’ it over a protein’s surface to be

examined, and our main contribution is in the way we can quickly score and select those candidate

positions. The Binding Ball’s definition is particularly suitable to assess the similarity between the spherical

functions representing a binding site and a selected set of atoms, which is traditionally assessed by a scoring

function based on the three-dimensional alignment of their atoms or surfaces. This may involve an ex-

haustive search in the space of all possible rotations and translations that might be computationally

demanding. To avoid this search, we design a comparison method to efficiently evaluate the similarity

between two binding sites without explicitly computing the best rotation.

While rolling the Binding Ball over a protein’s surface, we are able to efficiently score each position,

evaluating all possible rotations at that location simultaneously, by making use of a specific property of the

Spherical Fourier Transform (SFT). The key insight is that all possible rotations R can be evaluated

simultaneously by making use of the properties of the SFT. Informally, the SFT allows any spherical

function to be expanded as f (h)¼
P

l2N, m2[� l, l] cl
mYl

m(h), where cl
m are the spherical harmonic coefficients.

A similarity score, namely correlation, between two spherical functions for a given rotation R can be

computed using the SFT. In this article, we are not interested in the rotation that produces the highest

correlation, but in the integration of correlations for all possible rotations R. By exploiting a property of the

SFT, we prove that the former is computationally expensive and that the latter is a combination of spherical

harmonic coefficients. Hence, a fast screening of the candidate region is possible, resulting in a list of

putative regions that are found similar with the query binding site.

The spherical Fourier transformation has been already used in a variety of different contexts, including

the alignment of Binding Sites (Cai et al., 2002; Leicester et al., 1994a,b; Makadia and Daniilidis, 2006;

Ritchie and Kemp, 1999, 2000); see Section 2 for a more comprehensive discussion. In almost all appli-

cations, the rotation that best overlaps the two functions is computed explicitly from the spherical harmonic

representation. In this article, we do not align binding sites, but we want to efficiently discover regions that

are potentially similar to a given binding site.

Experiments on different ligands show good discrimination power when searching for known binding

sites using the average correlation. Moreover, we prove that this method can save up to 40% in time

compared with traditional approaches.

2. RELATED WORK

It has long been recognized that geometry plays an important role in structural bionformatics. Several

matching strategies have been employed for binding site recognition and classification, including hashing

techniques (Shulman-Peleg et al., 2004; Weskamp et al., 2004; Chen et al., 2005b,a), graph-theoretic

methods (Artymiuk et al., 2005; Hofbauer et al., 2004; Kinoshita et al., 2001; Shatsky et al., 2006;

Weskamp et al., 2004), moment invariants descriptors (Ballester and Richards, 2007; Sommer et al., 2007),

shape descriptors such as spin images and shape contexts (Bock et al., 2007a,b, 2008), and clustering

(Kuttner et al., 2003). Some approaches combine sequence and structure information (Barker and Thornton,

2003; Binkowski et al., 2003, 2005; Yao et al., 2003), whereas others integrate structural information with

physico-chemical properties (Hofbauer and Aszodi, 2005; Kinoshita et al., 2001; Minai et al., 2008;

Shulman-Peleg et al., 2004). Some of these techniques have been made available over the web (Ausiello

et al., 2008; Jambon et al., 2005; Kinoshita et al., 2001).

Below, we concentrate on reviewing approaches to protein binding site comparison and localization

based on spherical harmonics. For a comprehensive survey of other methods, see Laurie and Jackson

(2006). The expansion coefficients can be used as a feature vector or signature for describing the shape.

Properties of the spherical harmonics relevant to our application are presented in Section 3.2.

As global shape descriptors, the spherical harmonics are suitable to represent closed surfaces, such as

those of globular proteins. They have long been used in biochemistry and computational biology for protein

modeling, visualization, and comparison. An interesting feature is that they allow the representation of

geometry as well as of physico-chemical properties of the molecules, such as hydrophobicity and elec-
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trostatic properties. One of the first applications of spherical harmonics to protein rendering is found in Max

and Getzoff (1988); although this article does not apply this representation to comparing proteins, it does

however mention that structural similarity of two biomolecules can be expressed as the distance of their

spherical harmonic coefficients. In Leicester et al. (1988), this idea is further explored and applied to

molecular docking. The method evaluates the quality of the fit of candidate molecular interfaces; however,

it does not automatically search for possible locations of geometrically complementary surfaces.

Spherical harmonics cannot be directly applied to the problem of binding site recognition. This problem

requires us to analyze and extract local shape features of a protein surface, and it is not straightforward to

do that using a global shape descriptor. The first method using the spherical harmonic representation for

binding site recognition is presented in Cai et al. (2002). The binding site is represented by a single sphere,

placed in the center of the cavity where the binding site resides and then ‘‘inflated’’ until it approximates the

shape of the cavity. Their computational approach to compare two spherical functions is the same as that in

Ritchie and Kemp (1999, 2000).

In the above applications, spherical harmonics are restricted to single valued functions; i.e., it is assumed

that each ray of the unit sphere intersects the molecular surface at one point only. This restriction is

removed in Duncan and Olson (1993), where a protein is represented as an elastic surface and modeled by

the continuous deformation into a spherical shape.

In Leicester et al. (1994a,b), protein shapes are classified based on the L2 distance in coefficient space.

Basically the same idea was used in Morris et al. (2005) and Stockwell and Thornton (2006) to compare and

cluster protein binding sites. There, a registration phase is used to align two binding sites prior to comparing

them, thus avoiding the determination of the rotation for the spherical harmonic representation at the expense

of possible loss of accuracy. Neither approach offers a systematic way of computing distances under rigid

transformations, although it is recognized that this is a crucial aspect of the calculation.

In a series of papers, Ritchie and Kemp (1999, 2000) and Ritchie et al. (2008) propose an approach to the

docking problem using spherical Fourier correlation. They systematically search for complementary sites

on two proteins and exploit the properties of the SFT to efficiently search the space of all possible rotations.

In particular, rotations of a molecular surface are obtained by mixing the harmonic coefficients according to

a matrix representation of the rotation (Kostelec and Rockmore, 2008). These same ideas have been used in

the area of computer vision to compute the correlation of two images as a function of rotations (Makadia

and Daniilidis, 2006). Functions defined on the SO(3) group of rotations have fast SO(3)-Fourier transforms

(called SOFT) (Kostelec and Rockmore, 2008), which are closely related to the spherical harmonic ex-

pansions. An alternate method based on spherical harmonics (Kazhdan et al., 2003) represents a shape by

means of a shape signature that is invariant under rigid transformations, thus avoiding the explicit ex-

ploration of the rotation space when comparing two 3D objects.

3. BINDING BALL METAPHOR

We model a query binding site (BS) as a Binding Ball (BB). A Binding Ball is a sphere that touches the

protein surface at two points and has its center on one of the normals at the two points. A Binding Ball is

constructed such that no surface points are contained in it. Thus, the concept of Binding Ball is somehow

similar to the Connolly’s representation which uses a probe’s radius typically smaller than that of a BB

because of the different use. For every Binding Ball, we associate to it the set of surface points that are

within a given distance tbb from its center. A spherical function f that describes these surrounding points is

associated to the BB. This spherical representation f will be used to compare the Binding Ball with a

candidate region by resorting to Spherical Harmonics.

3.1. Binding ball construction

We now describe more formally the construction of a query Binding Ball. Given a point p 2 BS with

normal n, the Binding Ball tangent to p is constructed as follows. For any other point p0 2 BS, p0 6¼ pp, we

determine the sphere that touches the molecular surface at p and p0 and is centered on the normal n of p.

The sphere associated to the point p is chosen as the one with the smallest radius over the spheres

constructed for all points p0. Let rp be such minimum radius. Note that this ensure that the Binding Ball is

tangent to p, it touches some p0, and it does not include any other point. If rp is smaller than a given
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threshold rbb, then the sphere is discarded and no binding ball is associated to p. Otherwise, the Binding

Ball obtained is associated to the point p, and we create the spherical function f from all surface points that

are within distance tbb from its center. This procedure is repeated for all points in BS, and among all the

BBs thus created we choose the one that captures all atoms of the query binding site.

Note that the selected BB will be placed approximately at the center of the binding site. Moreover, the

radius of the BB mimics the ligand volume, and this is of great importance since the BB will be rolled

looking for similar regions. After an extensive evaluation, we determined rbb such that the ligand volume is

comparable with the BB volume; consequently the number of putative BBs is small, and tbb is such that the

number of atoms per BB can cover entirely the binding site. In our experiments, using as thresholds

rbb¼ 2Å and tbb¼ 10Å, the number of BBs in the cavities considered ranges between 20 and 200.

We recall that the spherical function f associated to the BB is computed for the set of surface points that

are within a distance tbb from its center. We compute f using the discretized spherical coordinates for the set

of points associated to the BB in the following way. We consider a tessellation of the unit sphere with

O(B2) bins, where B is called the bandwidth. For each bin of the sphere’s tessellation, we project the radius

passing by the bin’s center to the protein’s surface and compute the closest point to that radius. The bin’s

value is the distance between this point and the BB’s center. The set of points in this spherical coordinate

system produces the function f that will be used to compute the Spherical Harmonics coefficients.

3.2. Spherical harmonics

Given the spherical function f, that represents the atoms of the Binding Ball, here we want to compute the

Spherical Harmonics coefficients f̂f of f. These coefficients, f̂f , will be used as a signature for a fast

comparison of the function f with other candidate regions. Below we review spherical harmonics following

Healy et al. (2003), Makadia and Daniilidis (2006), and the references therein. The SFT is the equivalent on

the sphere of traditional Fourier analysis. In particular, a given spherical function on the sphere S2 is

approximated by a truncated series of basis functions Yl
m : S2 ! C, commonly known as the Spherical

Harmonics. The (2lþ 1) spherical harmonics of degree l are given by:

Yl
m(h, /)¼ kl, mPl

m(cosh)eim/, m¼ � l, . . . , l

where Pl
m are the associated Legendre functions, and the normalization constants kl,m are chosen to satisfy

the orthogonality of spherical harmonics:

kl, m¼ (� 1)m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2lþ 1)(l�m)

4p(lþm)

s

Thus, any function f (g) 2 B2(S2) can be written as:

f (g)¼
XB

l¼ 1

Xl

m¼ � l

f̂f l
mYl

m(g) where f̂f l
m¼

Z
g2S2

f (g)Yl
m(g)dg

where f̂f
l

m are the Fourier coefficients and B is the bandwidth that specifies the largest term of the expansion

corresponding to non zero coefficients. The coefficients can be computed in O(B2 log 2B) (Makadia and

Daniilidis, 2006).

3.3. Binding site recognition

Here we exploit the two parts that constitute the Binding Ball metaphor, i.e., construction and rolling, for

the detection of putative binding sites. In Figure 1a, we show the binding site of the protein 1csn, along with

the Binding Ball whose associated set of points coincides with the binding site. In Figure 1b, we show an

example of how a Binding Ball is used in a query. The Binding Ball is rolled over a protein’s surface and its

function f is compared with the surrounding. These two operations, construction and roll, constitute the

Binding Ball metaphor. In the following we address the fast comparison of the function f of the query

Binding Ball with the selected atoms, in yellow. Similarly to the Binding Ball construction, this selection

includes all atoms that are within a distance tbb from the BB center t. A spherical function g(t), representing

the selection associated to the position t (in yellow), is computed. The BB rolling and screening is now

simply the comparison of two spherical functions, f and g(t).
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FIG. 1. (a,b) Examples of construction and use for the Binding Ball of Protein 1csn.

BINDING BALLS: FAST DETECTION OF BINDING SITES 1581



3.4. Scoring with explicit alignment

The SFT can be used to efficiently compute the correlation of two spherical functions, f and g(t), in S2.

Given two functions in S2, f (Z) and g(Z,t), the correlation between f (Z) and g(Z,t) for a given rotation

R 2 SO(3) is defined as:

s(R, t)¼
Z

g2S2

g(g, t) f (RTg)dg

where RT is the transpose of R. This correlation is a function defined on the group SO(3) of rotations; thus, it

has fast SO(3)-Fourier (or SOFT) transform (Kostelec and Rockmore, 2008) that can be computed by

pointwise multiplications of the spherical harmonic coefficients of the two functions. A fast inverse SOFT

transform then reconstructs the original function s(R,t).

Finding the rotation with the maximum value of correlation is expensive. A complete analysis of its time

complexity is presented in Makadia and Daniilidis (2006). They prove that s(R,t) can be derived in three

steps: first compute the spherical harmonics coefficients for the two functions f (Z) and g(Z,t) in time

O(B2 log 2B); then combine the coefficients in time O(B3); finally compute the inverse SOFT transform in

time O(B3 log 2B). Clearly, the time complexity of the overall procedure is O(B3 log 2B) and is dominated

by the last term corresponding to the inverse SOFT transform.

3.5. Fast scoring

Here we address the problem of binding site detection given a query binding site, using a similarity

measure that does not require the explicit alignment of the two surfaces.

In our setting, the correlation between two functions, f and g(t), represents the similarity of the Binding

Ball with the candidate position t for a given rotation R. Since our objective is to efficiently screen all

possible position t and the associated g(t), irrespective of the rotation R generating the maximum value of

the correlation, we can marginalize out the unknown rotation. Thus, we propose the use of a different

scoring function that avoids the complexity of the computation of the maximum correlation over all

rotations. As we will show in Section 4, it also yields better results than the maximum correlation. We

evaluate the similarity between the BB and the position t using the score:

Score(t)¼
Z

R2SO(3)

s(R, t)2dR¼
Z

R2SO(3)

s(R, t)s(R, t)dR

where the integral is taken over all rotations and s(R, t) denotes the complex conjugate of s(R,t). Since we

are dealing with real functions f and g(t) then the correlation s(R,t) is also real and s(R, t)¼ s(R, t). Although

somewhat improperly, from now on we will refer to this score as the average correlation. This score can be

computed efficiently by exploiting the properties of the SFT. In particular, we prove that

Z
R2SO(3)

s(R, t)s(R, t)dR¼
XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

ŝsl
mpŝsl

mp

where ŝsl
mp are the coefficients of the SO(3) Fourier Transform of s(R,t).

Proof. We know that ŝsl
mp¼ ĝgl

m f̂f l
p and that s(R,t) can be expanded as

s(R, t)¼
XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

ĝgl
m f̂f l

pUl
pm(R)

where the set of functions Ul
pm are a basis for functions defined on SO(3). We recall that Ul

pm(a, b, c)¼
e� ipcPl

pm(cos(b))e� ima where Pl
pm are generalized associated Legendre polynomials. By substitution we can

write

Z
R2SO(3)

XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

XB

l2 ¼ 1

Xl2

m2 ¼ � l2

Xl2

p2 ¼ � l2

ĝgl
m f̂f l

pĝgl2
m2

f̂f l2
p2 Ul

pm(R)Ul2
p2m2 (R)dR
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since the coefficients ĝgl
m and f̂f l

p are rotation independent we can move them outside the integration, as in

XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

XB

l2 ¼ 1

Xl2

m2 ¼ � l2

Xl2

p2 ¼ � l2

ĝgl
m f̂f l

pĝgl2
m2

f̂f l2
p2

Z
R2SO(3)

Ul
pm(R)Ul2

p2m2 (R)dR

Given the orthogonality of the functions Ul
pm(R)Z

R2SO(3)

Ul
pm(R)Ul2

p2m2 (R)dR¼ dl, l2dm, m2
dp, p2

this yields non-zero terms only when l¼ l2, m¼m2 and p¼ p2, implying that almost all terms of the above

summations are zero. The remaining ones can be expressed as:

XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

ĝgl
mĝgl

m f̂f l
p f̂f l

p¼
XB

l¼ 1

Xl

m¼ � l

Xl

p¼ � l

ŝsl
mpŝsl

mp

Hence the claim. &

From the above proposition, it follows that the average correlation can be computed in time O(B3). By

contrast, the traditional approach to compute the maximum correlation requires O(B3 log 2B), as reported in

Section 3.2.

3.6. Algorithm summary

The input is the set of the surface points (Connolly’s points) of the binding site BS of protein A and of the

largest cavity C of protein B. The binding site BS is represented by a single binding ball BB, also called

Binding Ball query.

Outline of the algorithm is as follows:

1. Generate the query Binding Ball, BB, for protein A and compute the associated function f.

2. Roll BB over C. For each position t compare f with g(t) using as score the average correlation, Score(t), of the two

associated spherical functions.

3. Return the k top-ranking positions t, and the selections of atoms that generated g(t).

After constructing the query Binding Ball, BB, we scan the cavity C by rolling and scoring the BB over

C. Similarly to the construction of BB, for every point t 2 C we place the BB on the point’s normal. If it

does not intersect with any other surface’s point, we select a set of neighboring points within a distance tbb

and compute g(t). We compare f against all g(t) using the procedure based on spherical harmonics described

above. The positions t, and the associated sets of points, that produce the highest scores are selected as

candidate binding sites.

In the next section, we will exploit this algorithm to retrieve similarity information for a query binding

ball in a dataset of proteins binding known ligands. We will also evaluate the performance of our approach

in terms of the speed up with respect to the standard reconstruction of s(R,t).

4. RESULTS

In the experiments discussed below, we use the measures of coverage and accuracy to evaluate the

performance of our method for binding site detection. The coverage is defined as the percentage of residues

of a binding site that is found in our solution. The accuracy is the percentage of the residues in the solution

that are in the binding site. Better performances correspond to larger coverage and accuracy values.

4.1. Detection of binding sites of ligand ATP

In our first experiments, we considered a set of 21 proteins all binding ligand ATP and use as query the

active site of the Catalytic Subunit of cAMP-dependent Protein-Kinase (pdb code 1atp, chain E) also

binding ATP. The target proteins are from different families according to the structural classification SCOP

(Murzin et al., 1995) (Table 1, column 4). Comparison of the sequence and structure of 1atp with the other
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proteins of the set shows significant variation among overall sequence identities (from 0% to 34.3%) as

well as root mean square deviation (RMSD) of all Ca atoms (from 1.4 to 7.6 Angstroms). The sequence

identities and RMSD values shown in Table 1 have been determined using the alignment method Com-

binatorial Extension (CE) applied to the complete structures (Shindyalov and Bourne, 1998). Of the set of

proteins only three belong to the same SCOP family as 1atp, namely 1phk, 1csn, and 1hck. As expected,

those are the proteins that have the highest degree of overall sequence and structure similarity with 1atp.

We did the experiments between the query binding site of 1atp represented by a BB and the largest cavity

of each target protein, as described in the previous sections. In Table 2, for each pairwise comparison, we

report the top 5 BBs of the cavity that are found most similar to the query BB according to the average

correlation.

Table 2 (column 7) shows the coverage values for all pairwise comparisons of protein 1atp; they are

computed as the ratio of the values in columns 6 and 2. Not surprisingly, some of the best coverage results

are obtained for the three proteins 1phk, 1csn, and 1hck that have the same SCOP classification as 1atp

( protein kinase). However, similar good values of coverage are reported for proteins 1a49, 1f9a, 1b8a,

1gn8, 1mjh, and 1yag that belong to different SCOP families and share low degree of sequence and

structure similarity with the query. On average, our coverage results are good. The average coverage

computed over all 5 top-ranked BBs of all pairwise comparisons is 0.78 (as reported at the bottom of the

table). We observe that in a pairwise comparison the best coverage value over all 5 top BBs (in bold in

column 7 of Table 2) is generally achieved by the top-ranked BB. Indeed, the average coverage value

computed only for the top BB of all pairwise comparisons is 0.85. This observation may be useful in future

work that will address the problem of aligning binding sites based on spherical harmonics since it will

allow us to restrict the processing to the top BB.

There are cases where our procedure fails to locate the binding site of ATP on the target protein. We

consider a failure to occur when the coverage of the binding site for the top-ranked BB is below the value of

0.25. Failure occurs with three proteins: 1fmw (coverage 0), 1e8x (coverage 0.13), and 1kay (coverage

0.23). It might appear surprising that the correlation values in correspondence to these failures are relatively

high. For instance, the correlation value for the top BB of 1fmw is 2617.8. It turns out that protein 1fmw,

the motor domain of dictyostelium myosin, hosts in its largest cavity another ligand BL7 in addition to

ligand ATP (PDB complex 3bz9). The compound BL7 consists of several rings of atoms, two of which are

structurally similar to the adenine ring of ATP. We found that the top BB obtained for 1fmw has a good

Table 1. Sequence Identities and RMSD of the Proteins

of the Dataset when Compared to 1atp

Protein RMSD Seq. id. Family

1a49 5.6 Å 2.5% Pyruvate kinase beta-barrel domain

1a82 4.7 Å 5.6% Nitrogenase iron protein-like

1ayl 7.1 Å 5.0% PEP carboxykinase C-terminal domain

1csn 2.4 Å 19.0% Protein kinases, catalytic subunit

1b8A 6.2 Å 3.8% PEP carboxykinase C-terminal domain

1e2q 5.7 Å 4.5% Nucleotide and nucleoside kinases

1e8xA 4.4 Å 7.6% Phoshoinositide 3-kinase (PI3K) helical domain

1f9aC 6.0 Å 6.2% Adenylyltransferase

1f9w 7.1 Å 5.7% Motor proteins

1g5t 5.5 Å 0.0% RecA protein-like (ATPase-domain)

1gn8A 5.6 Å 6.2% Adenylyltransferase

1hck 1.9 Å 29.6% Protein kinases, catalytic subunit

1j7k1 5.2 Å 5.6% Helicase DNA-binding domain

1jjv 6.4 Å 7.5% Nucleotide and nucleoside kinases

1kay 6.1 Å 5.7% Actin=HSP70

1kp2A1 5.6 Å 7.5% N-type ATP pyrophosphatases

1mjhA 6.1 Å 4.7% Universal stress protein-like

1nsf 4.8 Å 8.3% Extended AAA-ATPase domain

1phk 1.4 Å 34.3% Protein kinases, catalytic subunit

1yag 7.6 Å 3.8% Actin=HSP70

Column 4 indicates the family of a protein according to SCOP.
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Table 2. Pairwise Comparisons Using as Query the Binding Site of 1atp Bound to ATP

Protein

No. of residues

of the BS

Rank

of BB

No. of residues

of the BB

Average

correlation

No. of residues

of BB\BS Coverage Accuracy

1a49A 32 1 46 2593.5 30 0.97 0.67

2 49 2538.2 32 0.97 0.63

3 38 2524.0 30 0.78 0.66

4 45 2518.3 31 0.97 0.69

5 44 2514.5 31 0.94 0.68

1a49C 34 1 45 2606.6 34 1.00 0.76

2 45 2586.1 31 0.91 0.69

3 41 2577.9 29 0.85 0.71

4 47 2577.7 33 0.97 0.70

5 44 2557. 34 1.00 0.77

1a82 23 1 32 2040.2 16 0.70 0.50

2 28 1970.3 17 0.74 0.61

3 27 1946.7 15 0.65 0.56

4 30 1941.4 21 0.91 0.70

5 31 1900.8 14 0.61 0.45

1ayl 27 1 33 2490.9 23 0.85 0.70

2 34 2457. 23 0.85 0.68

3 32 2452.4 23 0.85 0.72

4 33 2445.4 23 0.85 0.70

5 31 2410.6 19 0.70 0.61

1b8aB 22 1 42 2580.3 22 1.00 0.52

2 39 2572.6 17 0.77 0.44

3 36 2525.9 19 0.86 0.53

4 39 2415.8 22 1.00 0.56

5 38 2406.1 22 1.00 0.58

1csn 28 1 35 2271.0 28 1.00 0.80

2 33 2237.1 28 1.00 0.85

3 34 2232.3 28 1.00 0.82

4 32 2215.1 24 0.86 0.75

5 33 2189.0 28 1.00 0.85

1e2q 19 1 29 2262.8 11 0.58 0.38

2 29 2238.6 11 0.58 0.38

3 31 2196.1 10 0.53 0.32

4 29 2178.7 11 0.58 0.38

5 26 2155 11 0.58 0.42

1e8x 23 1 37 2813.1 3 0.13 0.08

2 38 2791.6 2 0.09 0.05

3 37 2729 2 0.09 0.05

4 33 2719.8 4 0.17 0.12

5 39 2701.2 2 0.09 0.05

1f9aC 24 1 31 2410.1 24 1.00 0.77

2 30 2406.1 23 0.96 0.77

3 27 2391 23 0.96 0.85

4 26 2351.1 23 0.96 0.88

5 25 2291.5 23 0.96 0.92

1fmw 24 1 39 2617.8 0 0.00 0.00

2 39 2610.2 0 0.00 0.00

3 33 2588.3 1 0.04 0.03

4 39 2555.2 0 0.00 0.00

5 36 2503.1 1 0.04 0.03

1g5t 13 1 23 2151.2 12 0.92 0.52

2 24 2059.9 12 0.92 0.50

3 24 2054 12 0.92 0.50

4 23 1987.9 8 0.62 0.35

5 24 1968.4 10 0.77 0.42

(continued)
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Table 2. (Continued)

Protein

No. of residues

of the BS

Rank

of BB

No. of residues

of the BB

Average

correlation

No. of residues

of BB\BS Coverage Accuracy

1gn8A 23 1 34 2344.3 23 1.00 0.68

2 33 2296.5 23 1.00 0.70

3 29 2285. 22 0.96 0.76

4 31 2274.4 23 1.00 0.74

5 32 2233.8 22 0.96 0.69

1hck 24 1 32 2391 23 0.96 0.72

2 33 2381.8 23 0.96 0.70

3 31 2364.7 24 1.00 0.77

4 34 2335.3 23 0.96 0.68

5 33 2316.1 23 0.96 0.70

1j7k 23 1 25 2182.4 21 0.91 0.84

2 26 2141.2 22 0.96 0.85

3 27 2087.1 20 0.87 0.74

4 26 2020.4 9 0.39 0.35

5 24 2011.6 22 0.96 0.92

1jjv 14 1 33 1865.8 8 0.57 0.24

2 32 1841.0 8 0.57 0.25

3 34 1771.1 6 0.43 0.18

4 36 1730.1 7 0.50 0.19

5 30 1692.6 8 0.57 0.27

1kay 30 1 31 2314.4 7 0.23 0.23

2 43 2286.9 26 0.87 0.60

3 42 2275.1 22 0.73 0.52

4 38 2259.3 23 0.77 0.61

5 46 2235.5 25 0.83 0.54

1kp2 26 1 43 2669.1 24 0.92 0.56

2 42 2622.8 22 0.85 0.52

3 42 2577.3 26 1.00 0.62

4 38 2533.6 21 0.81 0.55

5 43 2533.4 24 0.92 0.56

1mjhA 24 1 33 2211.6 24 1.00 0.73

2 31 2198.8 23 0.96 0.74

3 33 2163.4 24 1.00 0.73

4 32 2141.4 23 0.96 0.72

5 31 2103.7 23 0.96 0.74

1nsf 25 1 35 2162.8 24 0.96 0.69

2 31 2099.0 24 0.96 0.77

3 30 2007.8 20 0.80 0.67

4 26 2002.2 20 0.80 0.77

5 26 1994.1 20 0.80 0.77

1phk 27 1 29 2255.0 10 0.37 0.34

2 33 2249.8 15 0.56 0.45

3 31 2207.6 27 1.00 0.87

4 32 2204 27 1.00 0.84

5 31 2194.8 27 1.00 0.87

1yag 27 1 37 2402.6 26 0.96 0.70

2 36 2372.2 25 0.93 0.69

3 38 2320.4 26 0.96 0.68

4 35 2318.5 26 0.96 0.74

5 35 2304.4 26 0.96 0.74

Average 0.78 0.58

For each pairwise comparison, we report the top 5 BBs of the protein that are found most similar to the query BB according to the

average correlation (column 5). For each target protein, we list the number of residues of the binding site with ATP (column 2), the

number of residues in each of the top 5 BBs (column 4), and the number of residues common to the binding site and to the considered

BB (column 6). The BBs with the best coverage are shown in bold.
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coverage (0.5) of the binding site of BL7; furthermore, the residues of the binding site of BL7 contained in

the top BB are those in contact with the two rings similar to the adenine ring of ATP. The structural

similarity of these two surface regions is correctly detected by our procedure. Similar considerations apply

to the other two proteins 1e8x and 1kay, whose binding sites with ATP have high structural similarity with

that of 1fmw.

Next we evaluate the performance of our method in terms of accuracy. The accuracy in column 8 of

Table 2 is computed as the ratio of values in columns 6 and 4. We observe from the table that the accuracy

values of the top BBs although reasonably good are generally not close to the maximum obtainable value of

1.00. This is somewhat expected because a binding site is rarely a spherical region and is often smaller than

the surface region represented by any BB that includes the binding site.

Finally, we assess the goodness of the average correlation as scoring function relative to the classical

maximum correlation. Our choice of average correlation was mostly based on computational consider-

ations; as we have shown in the previous section, the time complexity of our approach improves over the

classical one. This translates in shorter execution times, as we will see below. However, it turns out that this

score is valid also if we take into account the quality of the results. We repeated the experiments on the

same data set using the maximum correlation and obtained on average coverage of 70.4% as opposed to

78% in our case (Table 2).

4.2. Detection of binding sites of ligand EQU

A second dataset was collected containing proteins from different SCOP families binding the steroid

EQUILENIN (EQU). We used as query the binding site extracted from the complex logz. On this set, we

conducted two types of experiments. The first was similar to the one described above, namely the query

binding site was searched in the largest cavity of the another protein. The results are reported in Table 3,

which shows only the top-ranked BB. The higher coverage values with respect to the results of ATP are

explained by the known limited conformational variability of this type of ligand. In the second type of

experiments, the search was not limited to the cavity but done over the entire protein surface. As the data in

Tables 3 and 4 show, in both cases the method is very effective, and the results are only slightly better for

the case of cavities. This is an important fact because, although in the majority of cases a ligand resides in

the largest cavity, sometimes it may be located on a relatively flat area. Thus, a search over the entire

surface will allow to locate the active site in all cases.

4.3. Functional prediction

One important application of protein surface matching is functional prediction. When a novel protein

with unknown function is discovered, a huge set of proteins with known function and binding sites can be

screened, searching for a candidate binding site in the new protein. More specifically, if a surface region of

the novel protein is similar to that of the binding site of another protein, the function of the novel protein

can be inferred and its molecular interaction predicted. Although our method was not explicitly designed

Table 3. The Query Binding Site Is that of EQU in Complex with 1ogz

Protein

No. of residues

of the BS

No. of residues

of top-ranked BB

Average

correlation

No. of residues

of BB\BS Coverage Accuracy

1csq 15 22 1645 15 1.00 0.68

1gs3 17 31 1950 17 1.00 0.55

1ogx 17 30 1689 17 1.00 0.57

1ogz 16 28 2154 16 1.00 0.57

1oh0 16 23 1814 16 1.00 0.70

1oho 16 27 1920 16 1.00 0.59

1qjg 14 27 2224 14 1.00 0.52

1w6y 16 22 1750 16 1.00 0.73

Average 0.99 0.62

The search is done on the largest cavity of the protein listed in column 1. Columns 4 and 5 show coverage of binding site and

accuracy of top BB in terms of residues.
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for functional prediction, it may provide a good initial step towards the solution of this problem. In fact, as

shown by the following experiment, the correlation values could provide a basis for prediction. In the

experiment, we use the binding sites of two different ligands (ATP and EQU) to query a set of five target

proteins binding ATP. Table 5 shows the results of all pairwise comparisons of the two queries with the

target proteins. We find that the average correlation over all pairwise comparisons of a single query is larger

for the query that binds ATP, i.e., the same ligand bound to the target structures.

Table 4. The Query Binding Site Is that of EQU in Complex with 1ogz

Protein

No. of residues

of the BS

No. of residues

of top-ranked BB

Average

correlation

No. of residues

of BB\BS Coverage Accuracy

1csq 15 23 1644 15 1.00 0.65

1gs3 17 31 1950 17 1.00 0.55

1ogx 17 30 1690 17 1.00 0.57

1ogz 16 29 2124 16 1.00 0.55

1oh0 16 29 1777 16 1.00 0.55

1oho 16 27 1920 16 1.00 0.59

1qjg 14 21 2068 11 0.79 0.52

1w6y 16 22 1750 16 1.00 0.73

Average 0.92 0.58

The search is done on the entire surface of the protein listed in column 1. Columns 4 and 5 show coverage and accuracy of the top

BB.

Table 5. Comparison of the Results Obtained with the Query Binding Site

of EQU (Columns 3–5) and with the Query Binding Site of ATP (Columns 6–8)

on the Same Set of Five Proteins Binding ATP

EQU vs. ATP ATP vs. ATP

Protein

No. of residues

in the BS

No. of residues

of top BB

Average

correlation Coverage

No. of residues

of top BB

Average

correlation Coverage

1a49C 34 43 2362 0.88 45 2607 1.00

1b8aA 22 40 2322 0.77 42 2580 1.00

1jjv 14 29 1677 0.36 33 1866 0.57

1kay 30 41 2021 0.70 43 2287 0.87

1j7k 23 26 1963 0.39 25 2182 0.91

Average 2069.00 0.62 2304 0.87

Table 6. Comparison of the Execution Times of Our Method (Columns 2–3)

with the Classical Method Based on Spherical Harmonics (Columns 4–5)

Our method, time (sec) Classical method, time (sec)

Protein Cavity only Entire surface Cavity only Entire surface

1csq 31.8 68.5 41.1 87.1

1gs3 27.5 65.3 33.8 97.9

1ogx 37.7 89.8 48.8 120.9

1ogz 17.4 75.1 20.9 105.3

1oh0 26.4 70.8 30.4 90.1

1oho 23.4 70.7 32.1 95.9

1qjg 24.1 75.0 33.8 106.7

1w6y 22.0 69.7 27.2 87.4

Average 26.3 73.1 33.5 98.9

Execution times are shown for two instances of the comparison: the search for a binding site is done on the

protein cavity only (columns 2, 4) or the entire surface (columns 3, 5).
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A thorough evaluation of our proposed method would have required comparisons with other methods

proposed in the literature. Although there exist several related methods, as surveyed in Section 2, the

problems they address often differ in significant ways. For instance, in most cases the problem is to

compare=classify binding sites. Another problem that has received attention is the alignment of binding

sites or cavities on two protein surfaces, in other words the determination of a set of corresponding

atoms=residues on two proteins based on some geometric or chemico-physical constraints. By contrast, the

problem we considered here is the fast screening of a structure to locate a candidate binding site using as

query a known binding site. No alignment is required nor used as a step towards the detection of the binding

site.

4.4. Execution times

A major strength of our approach is its reduced computational complexity with respect to the classical

approach based on spherical harmonics, as discussed in Section 3.5. In Table 6, we list the CPU time per

structure pair using the binding site of EQU as query; the program is run on a AMD Athlon XP 2600. We

report the execution times in the two instances of the comparison: when the search involves the largest

cavity only (column 2) or the entire surface (column 3). We also show the execution times of the classical

approach in which the maximum rather than the average correlation is computed. The CPU time for such

computations for the two instances of the comparison are shown in Table 6 (columns 4 and 5, respectively).

When considering the entire surface of the target protein, the average CPU time per pair of our approach,

reported at the bottom of the Table (column 3), is much lower than that to compute the maximum

correlation (column 5); in fact, the time saving is on average 40%.

5. CONCLUSION

We have developed a method for a fast detection of candidate binding sites on a protein surface based on

a property of spherical harmonics. We have shown that this approach is fast and effective: it achieves high

coverage of the binding site on average (0.78 on the benchmark dataset) with execution times of few

seconds.

Our scoring scheme, if compared with the traditional approach based on the maximum correlation, not

only is less computationally demanding, but also achieves higher coverage results. The high computational

efficiency allows the screening of large datasets of structures in search of functionally related proteins.

Thus, we expect this procedure to be a valuable aid in assisting biologists in the difficult task of assigning a

functional role to proteins.

To evaluate the goodness of results, a variety of different criteria have been used in the literature. For

example, many authors use the RMSD of the aligned residues, or the number of aligned residues. Some

approaches use our same evaluation criterion, i.e., the coverage of the binding site, but computed for the

obtained alignment. In general, the coverage of an alignment is conceivably worse than that of our

screening method because of the additional constraints. In fact, the alignment coverage values of MolLoc

reported in Bock et al. (2008) for some of the pairs considered in our tests (1atp paired with 1phk, 1csn,

1nsf ) are consistently smaller than our values. Future work on aligning the candidate binding sites based on

spherical harmonics will allow a more comprehensive evaluation.
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